Matriz extracelular


Matriz extracelular

Ilustración que muestra la matriz extracelular (membrana basal y la matriz intersticial) en relación con epitelio, endotelio y tejido conectivo
Nombre y clasificación
Latín Matrix Extracellularis
TH H2.00.03.0.02001
TH H2.00.03.0.02001
 Aviso médico 

En histología, la matriz extracelular (MEC) es el conjunto de materiales extracelulares que forman parte de un tejido. La MEC es un medio de integración fisiológico, de naturaleza bioquímica compleja, en el que están "inmersas" las células. Así la MEC es la sustancia del medio intersticial (intercelular).[1][2]

La MEC es un componente de vida importante. Los organismos formados por células se distinguen por su capacidad de interconectarse mediante una morfogénesis compleja que implica asociaciones celulares cooperativas para formar tejidos. Ahí es donde es importante y distintiva la MEC como componente cohesivo y medio logístico de integración de las diferentes unidades funcionales celulares.

Índice

Función


Debido a su naturaleza y composición tan diversa, la matriz extracelular puede desempeñar muchas funciones, como proporcionar soporte y puntos de fijación a las células, separar tejidos, y regular la comunicación intercelular. La matriz extracelular regula el comportamiento dinámico de la célula. Además, retiene una amplia gama de factores de crecimiento y actúa como un depósito local de estos.[3]​ Los cambios en las condiciones fisiológicas pueden desencadenar la actividad de proteasas, que causan la liberación local de dichos depósitos. Esto permite la activación rápida y local de funciones celulares mediada por los factores de crecimiento, sin necesidad de sintetizarlos de novo.

La formación de la matriz extracelular es esencial en procesos como el crecimiento, curación de heridas y fibrosis. La comprensión de la estructura de la matriz extracelular también nos ayuda a entender la compleja dinámica del proceso de invasión de los tumores y la metástasis en la biología del cancer,[3]​ ya que las metástasis a menudo implican la destrucción de la matriz extracelular[4]​ por enzimas como las serina y treonina proteasas y metaloproteinasas de la matriz.[3]

Las principales funciones de la matriz extracelular podemos resumirlas así:

  1. Llenar los intersticios y espacios entre las células en los tejidos.
  2. Darle a los tejidos resistencia mecánica (a la compresión y estiramiento, por ejemplo).
  3. Constituir el medio homeostático, nutritivo y metabólico de las células.
  4. Proporcionar fijación para el anclaje celular.
  5. Facilitar el movimiento y migración celular, principalmente en la organogénesis.
  6. Intervenir en la comunicación celular. Es el medio por el cual se transportan diferentes señales entre las células.
  7. Ser un reservorio de diferentes hormonas y otros metabolitos.

Composición y estructura


Los componentes químicos de la matriz extracelular son producidos dentro de las células del tejido y excretados a la matriz por exocitosis.[5]​ Una vez secretados se agregan a la matriz preexistente. La matriz extracelular está compuesta por un conjunto entrelazado de diferentes tipos de proteínas y polisacáridos que forman un entramado organizado y asociado estrechamente a la superficie de las células por medio de las uniones celulares. A pesar de que los componentes de la matriz son muy similares en todos los tejidos animales, las diferencias en sus cantidades relativas y en su organización producen una gran variedad de matrices con propiedades características, pudiendo formar estructuras calcificadas duras como dientes, hueso o caparazones, blandas (como en las medusas), transparentes (córnea) o elásticas y resistentes, como cartílagos o tendones.[6]

El término sustancia fundamental, actualmente en desuso, hace referencia a los componentes de la matriz que no son fibras, y que no pueden ser observados al microscopio óptico. La porción líquida de la matriz, denominada líquido intersticial, es un filtrado del plasma sanguíneo y de composición similar a este. Es una disolución acuosa que contiene aminoácidos, azúcares, ácidos grasos, coenzimas, hormonas, neurotransmisores, sales minerales, gases oxígeno y productos de desecho de las células.[7]

Las principales macromoléculas que componen la matriz extracelular son las siguientes:

Proteoglicanos

Los proteoglicanos están formados por una proteína central a la que se unen covalentemente los glucosaminoglucanos (GAG), que son polisacáridos de cadena larga no ramificada. Los proteoglicanos tienen una carga neta negativa que atrae cationes de Na+, y este, a su vez, atrae moléculas de agua por osmosis, lo que mantiene a la matriz y las células hidratadas. Los proteoglicanos pueden también ayudar a atrapar y almacenar factores de crecimiento en la matriz.[8]

Los principales monómeros que forman los glucosaminoglucanos son la N-acetilglucosamina, la N-acetilgalactosamina y el ácido glucurónico. Existen varios tipos de glucosaminoglucanos, que se diferencian por los monómeros que los forman, los tipos de enlaces que unen estos monómeros, y la localización de los grupos sulfato. Tres de estos (heparán sulfato, condroitín sulfato y queratán sulfato) se unen a proteínas para formar los proteoglicanos.[9][7]

Heparán sulfato

El Heparán sulfato es un polisacárido lineal que se encuentra en todos los tejidos animales.[10][11]​ Forma proteoglicanos en los cuales dos o tres cadenas del mismo están adheridas muy cerca de la superficie de la célula o a la matriz extracelular. De esta forma, el heparán sulfato se une a una variedad de ligandos de proteínas y regula una amplia variedad de actividades biológicas, incluidos los procesos de desarrollo, la angiogénesis, la coagulación sanguínea y la metástasis tumoral.[9]

Condroitín sulfato

Los condroitín sulfatos (o sulfatos de condroitina) contribuyen a la resistencia a la tracción del cartílago, tendones, ligamentos y paredes de la aorta. También se sabe que afectan la plasticidad neuronal.[9][12]

Queratán sulfato

Los queratán sulfatos o sulfatos de queratina tienen un contenido variable de sulfato y, a diferencia de muchos otros GAG, no contienen ácido urónico. Están presentes en la córnea, el cartílago, los huesos y los cuernos de los animales.[9]

Ácido hialurónico

El ácido hialurónico es un glucosaminoglucano formado por residuos alternos de ácido glucurónico y N-acetilglucosamina. No se encuentra unido a proteínas ni contiene azúcares sulfatados, por lo que no es un proteoglicano.[13]​ El ácido hialurónico en el espacio extracelular confiere a los tejidos la capacidad de resistir la compresión al proporcionar una fuerza de turgencia (hinchazón) debido a la absorción de cantidades significativas de agua. Se encuentra en abundancia en la matriz extracelular de las articulaciones que soportan elevada carga y es un componente importante de los fluídos articulares, en los que actúa como lubricante.[14]​ A diferencia de otros glucosaminoglucanos, el ácido hialurónico es sintetizado por un complejo enzimático en la superficie celular.[9]

El ácido hialurónico actúa como una señal ambiental que regula el comportamiento celular durante el desarrollo embrionario y organogénesis, los procesos de curación, la inflamación y el desarrollo de tumores. En estos procesos, el exceso de ácido hialurónico es eliminado mediante la enzima hialuronidasa.[9]​ Interactúa con un receptor transmembrana específico, CD44.[15]

Fibras de Proteína

Colágenos

Los colágenos son las proteínas más abundante de la matriz extracelular. De hecho, el colágeno es la proteína más abundante en el cuerpo humano[16][17]​ y representa el 90% del contenido de proteína de la matriz ósea.[18]​ Los colágenos están presentes en la matriz como proteínas fibrilares y dan soporte estructural a las células del tejido. El colágeno es exocitado en forma precursora (procolágeno), que luego es escindido por proteasas de procolágeno para permitir el ensamblaje extracelular. Los trastornos como el síndrome de Ehlers Danlos, la osteogénesis imperfecta y la epidermólisis ampollosa están relacionados con defectos genéticos en los genes que codifican el colágeno.[19][20][5]

El colágeno se puede dividir en varias familias según los tipos de estructura que forman:

  1. Fibrilar (tipos I,II,III,V,XI)
  2. FACIT o colágenos asociados a fibrillas con hélices triples interrumpidas (tipos IX,XII,XIV)
  3. Cadena corta (tipos VIII,X)
  4. Membrana basal (Tipo IV)
  5. Otros (tipos VI,VII, XIII)

Elastina

Las elastinas, a diferencia de los colágenos, dan elasticidad a los tejidos, lo que les permite estirarse cuando es necesario y luego volver a su estado original. Esto es útil en los vasos sanguíneos, los pulmones, la piel y el ligamento nucal, y estos tejidos contienen grandes cantidades de elastinas. Las elastinas son sintetizadas por fibroblastos y células del músculo liso. Las elastinas son altamente insolubles y las tropoelastinas se secretan dentro de una molécula chaperona, que libera la molécula precursora al entrar en contacto con una fibra de elastina madura. Luego, las tropoelastinas se desaminan para incorporarse a la hebra de elastina. Los trastornos como la cutis laxa y el síndrome de Williams se asocian con fibras de elastina deficientes o ausentes en la matriz extracelular.[21][22][5]

Glucoproteínas

Matriz extracelular en vegetales


Las células vegetales están rodeadas por completo por una matriz compleja llamada pared celular, una estructura relativamente rígida que proporciona a la célula resistencia a la tracción para soportar la presión de turgencia osmótica (que puede superar las 10 atmósferas), pero que puede ser lo suficientemente flexible como para permitir el crecimiento celular cuando sea necesario; también sirve como medio para la comunicación intercelular. La pared celular comprende múltiples capas laminadas de microfibrillas de celulosa incrustadas en una matriz de glicoproteínas, que incluyen hemicelulosa, pectina y extensina. Otro componente importante es la lignina.[25][26]

Los componentes de la matriz de glicoproteínas ayudan a que las paredes celulares de las células vegetales adyacentes se unan entre sí. La permeabilidad selectiva de la pared celular se rige principalmente por las pectinas en la matriz de glicoproteínas. Los plasmodesmos son poros que atraviesan las paredes celulares de las células vegetales adyacentes y comunican los citoplasmas de las células vecinas.[27]​ Estos canales están estrechamente regulados y permiten selectivamente que moléculas de tamaños específicos pasen entre las células.[28]

La rigidez de la pared celular le permite ejercer la función de esqueleto en los vegetales, ya que es capaz de sostener la estructura de toda la planta.[29]

Véase también


Referencias


  1. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (February 2016). «Extracellular matrix structure». Advanced Drug Delivery Reviews 97: 4-27. PMID 26562801 . doi:10.1016/j.addr.2015.11.001 . 
  2. Bonnans C, Chou J, Werb Z (December 2014). «Remodelling the extracellular matrix in development and disease» . Nature Reviews. Molecular Cell Biology 15 (12): 786-801. PMC 4316204 . PMID 25415508 . doi:10.1038/nrm3904 . 
  3. a b c Kumar, Abbas, Fausto; Robbins and Cotran: Pathologic Basis of Disease; Elsevier; 7th ed.
  4. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980). «Metastatic potential correlates with enzymatic degradation of basement membrane collagen» . Nature (en inglés) 284 (5751): 67-8. PMID 6243750 . doi:10.1038/284067a0 . 
  5. a b c d e Plopper G (2007). The extracellular matrix and cell adhesion, in Cells (eds Lewin B, Cassimeris L, Lingappa V, Plopper G). Sudbury, MA: Jones and Bartlett. ISBN 0-7637-3905-7. 
  6. Alberts et al., Raff, p. 1062-1063.
  7. a b c d Paniagua Gómez-Alvarez, 2002, p. 74.
  8. Alberts et al., Raff, p. 1063.
  9. a b c d e f Alberts et al., Raff, p. 1063-1067.
  10. Gallagher, J.T., Lyon, M. (2000). «Molecular structure of Heparan Sulfate and interactions with growth factors and morphogens». En Iozzo, M, V., ed. Proteoglycans: structure, biology and molecular interactions. Marcel Dekker Inc. New York, New York. pp. 27-59. 
  11. Iozzo, R. V. (1998). «Matrix proteoglycans: from molecular design to cellular function». Annu. Rev. Biochem. 67: 609-652. PMID 9759499 . doi:10.1146/annurev.biochem.67.1.609 . 
  12. Hensch TK (2005). «Critical period mechanisms in developing visual cortex» . Curr. Top. Dev. Biol. 69: 215-37. PMID 16243601 . doi:10.1016/S0070-2153(05)69008-4 . 
  13. Paniagua Gómez-Alvarez, 2002.
  14. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. «Integrating Cells Into Tissues». Molecular Cell Biology (5ª edición). New York: WH Freeman and Company. pp. 197-234. 
  15. Peach RJ, Hollenbaugh D, Stamenkovic I, Aruffo A (1993). «Identification of hyaluronic acid binding sites in the extracellular domain of CD44» . J. Cell Biol. 122 (1): 257-64. PMC 2119597 . PMID 8314845 . doi:10.1083/jcb.122.1.257 . 
  16. Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD (2002). «Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen». J. Biol. Chem. 277 (6): 4223-31. PMID 11704682 . doi:10.1074/jbc.M110709200 . 
  17. Karsenty G, Park RW (1995). «Regulation of type I collagen genes expression». Int. Rev. Immunol. 12 (2-4): 177-85. PMID 7650420 . doi:10.3109/08830189509056711 . 
  18. Kern B, Shen J, Starbuck M, Karsenty G (2001). «Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes». J. Biol. Chem. 276 (10): 7101-7. PMID 11106645 . doi:10.1074/jbc.M006215200 . 
  19. Alberts et al., Raff, p. 1066-1070,1075-1076.
  20. Paniagua Gómez-Alvarez, 2002, p. 74-75,580-586.
  21. Alberts et al., Raff, p. 1070-1072.
  22. Paniagua Gómez-Alvarez, 2002, p. 75, 586-588.
  23. Alberts et al., Raff, p. 1072-1074.
  24. Alberts et al., Raff, p. 1074-1077.
  25. Alberts et al., Raff, p. 1087-1093.
  26. Paniagua Gómez-Alvarez, 2002, p. 88-98.
  27. Alberts et al., Raff, p. 1058-1060, 1088.
  28. Paniagua Gómez-Alvarez, 2002, p. 95.
  29. Alberts et al., Raff, p. 1089.

Bibliografía











Categorías: Fisiología | Histología




A partir de: 07.12.2021 01:50:55 CET

Fuente: Wikipedia (Autores [Historia])    Licencia: CC-BY-SA-3.0

Modificaciónes: Se eliminaron todas las imágenes y la mayoría de los elementos de diseño relacionados con ellos. Algunos iconos fueron reemplazados por FontAwesome-Icons. Algunas plantillas se eliminaron (como "el artículo necesita expansión) o se asignaron (como" notas de sombrero "). Las clases CSS fueron eliminadas o armonizadas.
Se eliminaron los enlaces específicos de Wikipedia que no conducen a un artículo o categoría (como "Enlaces rojos", "enlaces a la página de edición", "enlaces a portales"). Cada enlace externo tiene un FontAwesome-Icon adicional. Además de algunos pequeños cambios de diseño, se eliminaron los contenedores de medios, mapas, cuadros de navegación, versiones habladas y Geo-microformatos.

Tenga en cuenta: Debido a que el contenido dado se toma automáticamente de Wikipedia en el momento dado, una verificación manual fue y no es posible. Por lo tanto, LinkFang.org no garantiza la precisión y la actualidad del contenido adquirido. Si hay una información que es incorrecta en este momento o tiene una pantalla incorrecta, no dude en Contáctenos: e-mail.
Ver también: Información legal & Política de privacidad.