Intervalo (música)


(Redirigido desde Intervalos_musicales)

Intervalo es la distancia (en términos de altura) entre dos notas musicales o entre dos sonidos. En general, suelen medirse según las notas de una escala incluyendo los extremos (por ejemplo, entre RE y FA, si se cuenta de manera ascendente, hay una tercera), o bien por la diferencia de tonos y semitonos, o solamente de semitonos. Por ejemplo, una quinta justa es un intervalo de 7 semitonos que se miden en un teclado.

Índice

Tipos de intervalos


Los intervalos tonales (a veces llamados consonancias perfectas) pueden ser justos; los modales (a veces llamados consonancias imperfectas y disonancias) pueden ser mayores o menores. Además todos los tipos de intervalos pueden ser aumentados o disminuidos

Se denomina armónico al intervalo cuyos sonidos suenan simultáneamente y melódico a aquel cuyos sonidos suenan sucesivamente.

Los intervalos melódicos pueden ser, además, ascendentes o descendentes.

Se consideran simples los intervalos no mayores que una octava y compuestos a los que la exceden. Los intervalos compuestos son análogos a los intervalos simples correspondientes. Así, una novena es una segunda a la octava y puede ser mayor o menor; una duodécima es análoga a una quinta y puede ser justa,aumentada o disminuida.

Se llaman complementarios los intervalos que, sumados, conforman una octava: una cuarta y una quinta son complementarias. Nótese que la suma de los cuatro grados de la cuarta y los cinco grados de la quinta se resuelve en ocho grados, no nueve, porque el cuarto grado de la cuarta es a la vez el primer grado de la quinta.


Denominación de los intervalos simples


Nombre del intervalo/Grados[1] Distancia en tonos y semitonos Como suena en el sistema temperado
Unísono[2] Mismo sonido
Segunda menor 1 semitono  Escuchar 2ªm
Segunda mayor o tercera disminuida 1 tono  Escuchar 2ªM
Tercera menor o segunda aumentada 1 1/2 tonos
Tercera mayor o cuarta disminuida 2 tonos
Cuarta justa o tercera aumentada 2 1/2 tonos
Cuarta aumentada o quinta disminuida (llamada tritono)[3] 3 tonos  Escuchar 4ªA


Quinta justa o sexta disminuida 3 1/2 tonos  Escuchar 5ªJ
Sexta menor o quinta aumentada 4 tonos  Escuchar 6ªm
Sexta mayor o séptima disminuida 4 1/2 tonos  Escuchar 6ªM
Séptima menor o sexta aumentada 5 tonos  Escuchar 7ªm
Séptima mayor 5 1/2 tonos  Escuchar 7ªM


Octava justa 6 tonos  Escuchar 8ªJ

Con la segunda nota en la siguiente octava y manteniendo la fundamental se generan los intervalos de novena, que equivale con una octava de diferencia al de segunda, el de undécima, que equivale al de cuarta, el de treceava, que equivale al de sexta, etc.  Escuchar novena menor  Escuchar novena mayor

EJEMPLO

2m desde C = Db

4J desde A = D

7M desde F = E

Intervalos formados por los mismos sonidos


Puede ocurrir que dos intervalos formados por dos parejas iguales de sonidos tengan distinto nombre dependiendo de su función y del contexto musical en el que se encuentren.

Distancia en tonos
Intervalo 1/2 1 1-1/2 2 2-1/2 3 3-1/2 4 4-1/2 5 5-1/2 6
2m 2M 2A
3d 3m 3M 3A
4d 4J 4A
5d 5J 5A
6d 6m 6M 6A
7d 7m 7M 7A
8d 8J

Historia


Los primeros trabajos teóricos conocidos son los de Aristóxeno de Tarento, quien se basó en un método tanto empírico como matemático, a diferencia de las especulaciones filosóficas y matemáticas de Pitágoras.

Antiguamente se empleaba para su enseñanza un instrumento llamado monocordio. El cálculo matemático de las frecuencias de los sonidos e intervalos musicales fue estudiado en el siglo XVI por Simon Stevin mediante funciones exponenciales. Durante el siglo XVII, los investigadores Francesco Cavalieri y Juan Caramuel aplicaron el cálculo logarítmico.

En el siglo XIX, Hermann Helmholtz construyó los resonadores que hoy llevan su nombre, posteriormente utilizados para demostrar que todos los sonidos son por naturaleza complejos y consisten en una serie de sonidos concomitantes o armónicos naturales en intervalos que son iguales a los demostrados por el monocordio.

Consonancia y disonancia


La calificación de intervalos como consonantes o disonantes ha variado enormemente a lo largo de los siglos, así como la definición de lo consonante o disonante en sí.

Por ejemplo, durante la edad media la autoridad adjudicada a Pitágoras llevó a los especuladores a considerar a la cuarta justa como la consonancia perfecta y a utilizarla para la composición de organa. Durante la misma época, especulaciones de carácter teológico llevaron a considerar a la cuarta aumentada, llamada "tritono", como diabólica (tritonus diabolus in musica est).

La armonía tradicional desde el siglo XVII considera disonantes los intervalos armónicos de primera aumentada —semitono cromático—, segunda mayor o menor, cuarta aumentada, quinta disminuida o aumentada, séptima mayor o menor y octava disminuida o aumentada. Una posible consideración más detallada es la siguiente:

  • Consonancias perfectas: los intervalos de 4ª, 5ª y 8ª cuando son justas.
  • Consonancias imperfectas: los intervalos de 3ª y 6ª cuando son mayores o menores.
  • Disonancias absolutas: los intervalos de 2ª y 7ª mayores y menores.
  • Disonancias condicionales: todos los intervalos aumentados y disminuidos, excepto la 4ª aumentada y la 5ª disminuida.
  • Semiconsonancias: la 4ª aumentada y la 5ª disminuida.

Además, en el contexto de la armonía tradicional, el intervalo melódico de cuarta aumentada es considerado disonante.

Frecuencias


La diferencia de la frecuencia entre las dos notas de un intervalo se puede medir mediante la relación entre ambas frecuencias. En algunas afinaciones se utilizan ciertos intervalos justos, es decir que corresponden a fracciones simples, por ejemplo 2:1 (octava), 3:2 (quinta justa), 4:3 (cuarta justa), 5:3 (sexta mayor), 5:4 (tercera mayor), 6:5 (tercera menor) y 8:5 (sexta menor).

Intervalos armónicos o melódicos


Un intervalo se puede producir tocando ambas notas al mismo tiempo (intervalo armónico), o una después de otra (intervalo melódico). En este último caso se puede diferenciar la dirección del sonido entre ascendente (cuando la segunda nota es más aguda que la primera) y descendente (cuando la segunda nota es más grave que la primera).

Inversión


Un intervalo puede ser invertido, al subir la nota inferior una octava o bajando la nota superior una octava, aunque es menos usual hablar de las inversiones de unísonos u octavas. Por ejemplo, la cuarta entre un Do grave y un Fa más agudo puede ser invertida para hacer una quinta, con un Fa grave y un Do más agudo. He aquí formas de identificar las inversiones de intervalos:

Un ejemplo completo: Mi♭ debajo y Do por encima hacen una sexta mayor. Por las dos reglas anteriores, Do natural debajo y Mi Bemol por encima deben hacer una tercera menor.

Véase también


Referencias


  1. Entiéndase como los grados de la escala que se ven afectados por el intervalo.
  2. Riemann, Hugo. Teoría General de la Música. Barcelona: Idea Books. p. 67. ISBN 84-8236-324-7. 
  3. Rousseau, Jean-Jacques ([1768] 2005). Diccionario de Música. Madrid: Akal. pp. Lámina C figura 2. ISBN 978-84-460-2172-8. 

Bibliografía


Enlaces externos











Categorías: Intervalos musicales




A partir de: 22.03.2022 11:34:45 CET

Fuente: Wikipedia (Autores [Historia])    Licencia: CC-BY-SA-3.0

Modificaciónes: Se eliminaron todas las imágenes y la mayoría de los elementos de diseño relacionados con ellos. Algunos iconos fueron reemplazados por FontAwesome-Icons. Algunas plantillas se eliminaron (como "el artículo necesita expansión) o se asignaron (como" notas de sombrero "). Las clases CSS fueron eliminadas o armonizadas.
Se eliminaron los enlaces específicos de Wikipedia que no conducen a un artículo o categoría (como "Enlaces rojos", "enlaces a la página de edición", "enlaces a portales"). Cada enlace externo tiene un FontAwesome-Icon adicional. Además de algunos pequeños cambios de diseño, se eliminaron los contenedores de medios, mapas, cuadros de navegación, versiones habladas y Geo-microformatos.

Tenga en cuenta: Debido a que el contenido dado se toma automáticamente de Wikipedia en el momento dado, una verificación manual fue y no es posible. Por lo tanto, LinkFang.org no garantiza la precisión y la actualidad del contenido adquirido. Si hay una información que es incorrecta en este momento o tiene una pantalla incorrecta, no dude en Contáctenos: e-mail.
Ver también: Información legal & Política de privacidad.