Gran círculo


El gran círculo, denominado también círculo mayor o círculo máximo, es el círculo resultante de una sección realizada a una esfera mediante un plano que pase por su centro y la divida en dos hemisferios; la sección circular obtenida tiene el mismo diámetro que la esfera.

La distancia más corta entre dos puntos de la superficie de una esfera siempre es el arco de círculo máximo que los une.

Índice

Aplicaciones de círculos máximos


Geometría riemanniana

En la geometría riemanniana este concepto sirve para ilustrar cómo hay espacios donde hay puntos (los antipodales) que admiten más de una geodésica contrastando lo que sucede en espacios euclídeos, en los que por dos puntos elegidos arbitrariamente solo pasa una única geodésica.

Triángulos esféricos

Si tres puntos de la superficie esférica son unidos por arcos de círculo máximo menores a 180º, la figura obtenida se denomina triángulo esférico. Los lados del polígono así formado se expresan por conveniencia como ángulos cuyo vértice es el centro de la esfera y no por su longitud. Este arco medido en radianes y multiplicado por el radio de la esfera es la longitud del arco. En un triángulo esférico los ángulos cumplen que: 180° < \({\displaystyle \alpha \!}\) + \({\displaystyle \beta \!}\) + \({\displaystyle \gamma \!}\) < 540°

Geografía y cartografía

En geografía y cartografía, los círculos máximos que pasan por los polos determinan las líneas de longitud (meridianos). En la latitud, en cambio, existe solo un círculo máximo: el ecuador terrestre. Las demás latitudes están determinadas por círculos menores paralelos al ecuador (paralelos).

Véase también


Enlaces externos











Categorías: Términos de geografía | Geometría elemental | Trigonometría esférica




A partir de: 05.06.2021 02:09:52 CEST

Fuente: Wikipedia (Autores [Historia])    Licencia: CC-BY-SA-3.0

Modificaciónes: Se eliminaron todas las imágenes y la mayoría de los elementos de diseño relacionados con ellos. Algunos iconos fueron reemplazados por FontAwesome-Icons. Algunas plantillas se eliminaron (como "el artículo necesita expansión) o se asignaron (como" notas de sombrero "). Las clases CSS fueron eliminadas o armonizadas.
Se eliminaron los enlaces específicos de Wikipedia que no conducen a un artículo o categoría (como "Enlaces rojos", "enlaces a la página de edición", "enlaces a portales"). Cada enlace externo tiene un FontAwesome-Icon adicional. Además de algunos pequeños cambios de diseño, se eliminaron los contenedores de medios, mapas, cuadros de navegación, versiones habladas y Geo-microformatos.

Tenga en cuenta: Debido a que el contenido dado se toma automáticamente de Wikipedia en el momento dado, una verificación manual fue y no es posible. Por lo tanto, LinkFang.org no garantiza la precisión y la actualidad del contenido adquirido. Si hay una información que es incorrecta en este momento o tiene una pantalla incorrecta, no dude en Contáctenos: e-mail.
Ver también: Información legal & Política de privacidad.