Función de Mertens


En teoría de números, la función de Mertens se define como:

\({\displaystyle M(n)=\sum _{1\leq k\leq n}\mu (k)}\)

donde μ(k) es la función de Möbius. Dado que la función de Möbius contempla solo las imágenes {-1,0,1} resulta obvio que la función de Mertens apenas varía en su recorrido y que no existe ningún valor de x para el cual |M(x)|>x. La conjetura de Mertens va más lejos afirmando que no hay valor para x donde el valor absoluto de la función de Mertens exceda el valor de la raíz cuadrada de x, sin embargo, se ha demostrado que esta conjetura es falsa (sí hay valores de x tales que el valor absoluto de la función de Mertens es mayor que la raíz cuadrada de x).

Algunos valores de la función de Mertens son 1, 0, -1, -1, -2, -1, -2, -2,... (sucesión A002321 en OEIS).

Véase también


Enlaces externos











Categorías: Funciones aritméticas | Funciones epónimas




A partir de: 10.10.2021 04:43:04 CEST

Fuente: Wikipedia (Autores [Historia])    Licencia: CC-BY-SA-3.0

Modificaciónes: Se eliminaron todas las imágenes y la mayoría de los elementos de diseño relacionados con ellos. Algunos iconos fueron reemplazados por FontAwesome-Icons. Algunas plantillas se eliminaron (como "el artículo necesita expansión) o se asignaron (como" notas de sombrero "). Las clases CSS fueron eliminadas o armonizadas.
Se eliminaron los enlaces específicos de Wikipedia que no conducen a un artículo o categoría (como "Enlaces rojos", "enlaces a la página de edición", "enlaces a portales"). Cada enlace externo tiene un FontAwesome-Icon adicional. Además de algunos pequeños cambios de diseño, se eliminaron los contenedores de medios, mapas, cuadros de navegación, versiones habladas y Geo-microformatos.

Tenga en cuenta: Debido a que el contenido dado se toma automáticamente de Wikipedia en el momento dado, una verificación manual fue y no es posible. Por lo tanto, LinkFang.org no garantiza la precisión y la actualidad del contenido adquirido. Si hay una información que es incorrecta en este momento o tiene una pantalla incorrecta, no dude en Contáctenos: e-mail.
Ver también: Información legal & Política de privacidad.