Arthropoda - es.LinkFang.org

Arthropoda




 
Artrópodos
Rango temporal: Cámbrico-Holoceno
Taxonomía
Dominio: Eukaryota
Reino: Animalia
Subreino: Eumetazoa
(sin rango) Bilateria
Protostomia
Superfilo: Ecdysozoa
Panarthropoda
Filo: Arthropoda
Latreille, 1829
Subfilos

Los artrópodos (Arthropoda, del griego ἄρθρον, árthron, «articulación» y πούς, poús, «pie») constituyen el filo más numeroso y diverso del reino animal (Animalia). El término incluye animales invertebrados dotados de un esqueleto externo y apéndices articulados; entre otros, insectos, arácnidos, crustáceos y miriápodos.

Hay más de 1 300 000 especies descritas,[1]​ en su mayoría insectos (estimados entre 941.000 a un millón de especies),[2][3][4]​ que representan al menos el 80% de todas las especies animales conocidas.[5]​ Son importantes miembros de ecosistemas marinos, de agua dulce, terrestres y aéreos. Varios grupos de artrópodos están perfectamente adaptados a la vida en ambientes secos, al igual que los vertebrados amniotas y a diferencia de todos los demás filos de animales, que son acuáticos o requieren ambientes húmedos.

Índice

Origen


Los primeros artrópodos podrían haber sido similares a los anélidos, que según propuestas filogenéticas serían su grupo hermano. Su cuerpo habría sido largo y blando, provisto de muchos segmentos, todos ellos muy similares y equipados con un par de patas. Posteriormente la superficie del cuerpo se endureció hasta formar un esqueleto externo (exoesqueleto) o cutícula que contiene quitina, proteínas, lípidos y sales de calcio.

Características


Los artrópodos constituyen una de las grandes divisiones del reino animal, subdividida en diversas clases, algunas de las cuales cuentan con gran número de géneros y especies. Se los denomina de esta manera por estar provistos de patas articuladas. De hecho, todo el cuerpo de los artrópodos está formado por varios segmentos unidos entre sí por medio de articulaciones.

A pesar de su gran variedad y su disparidad, los artrópodos poseen en común características morfológicas y fisiológicas fundamentales:

Exoesqueleto

El exoesqueleto de los artrópodos es una cubierta continua llamada cutícula, que se extiende incluso por los dos extremos del tubo digestivo y por las vías o cavidades respiratorias, y que está situada por encima de la epidermis (llamada en éstos por ese motivo hipodermis), que es la que la secreta.

La composición del exoesqueleto es glucopeptídica (con una parte glucídica y una parte peptídica). El componente principal y más característico pertenece al primero de estos dos tipos, y es la quitina, un polisacárido derivado del aminoazúcar N-acetil-2-D-glucosamina que se encuentra también, por ejemplo, en la pared celular de los hongos. En muchos casos la consistencia del exoesqueleto gana por el añadido de sustancias minerales, como en el caso de los cangrejos y otros crustáceos decápodos cuya cutícula aparece calcificada, por depósito de carbonato cálcico.

El espesor y dureza de la cutícula no es igual en toda su extensión. Por el contrario, aparece formando zonas endurecidas llamadas escleritos, separadas o unidas entre sí por zonas más delgadas y flexibles. Los escleritos reciben denominaciones complejas que varían en cada grupo, pero se llaman de manera general terguitos los de ubicación dorsal, esternitos los de ubicación ventral y pleuritos los laterales. Pueden existir además crestas del exoesqueleto desarrolladas hacia adentro llamadas apodemas y otras llamadas apófisis, ambas invaginaciones de la pared del cuerpo forman procesos rígidos que sirven para la inserción de músculos y para dar fortaleza o rigidez al exoesqueleto.[10]

El exoesqueleto está estructurado en las siguientes capas:

  1. Epicutícula. Muy delgada, estratificada a su vez y con propiedades hidrófobas que le confieren una función impermeabilizante. Está compuesta de proteínas y sustancias lipídicas tales como ceras. Donde es más delgada se facilita el intercambio de sustancias, por ejemplo la transpiración.
  2. Procutícula. Es la parte principal y más gruesa de la cutícula. Está formada a su vez por dos capas:
    1. Exocutícula. Esta parte es la de espesor más desigual y la más rígida. Su dureza deriva de la presencia de compuestos fenólicos que enlazan a los otros polímeros. Abunda en los escleritos y es más delgada o está ausente en las zonas de articulación.
    2. Endocutícula. Gruesa pero a la vez flexible y de espesor más uniforme que la exocutícula.

La cutícula aparece muy frecuentemente cubierta de quetas (pelos) de diversa función, incluida la sensorial táctil.

La coloración de los artrópodos suele depender de la cutícula. En la procutícula se depositan pigmentos coloreados o cristales de guanina. La epicutícula puede presentar estriaciones finas que producen colores físicos (no químicos), como la apariencia metálica o irisada de muchos insectos.

Ecdisis

El esqueleto externo tiene una desventaja y es que, para poder crecer, el animal debe desprenderse de él. Lo hace en un proceso, controlado hormonalmente, de ecdisis o muda. La hipodermis secreta enzimas que ablandan y digieren en parte la capa más inferior de la cutícula (la endocutícula), provocando que el resto se desprenda. Inmediatamente comienza la secreción de una cutícula nueva, primero la epicutícula y luego, debajo de ella, la procutícula. Hasta que no se endurece esta nueva cubierta el animal está relativamente indefenso, con menos posibilidad de escapar o resistirse. Todo el proceso de la muda está controlado hormonalmente; la ecdisona u "hormona de la muda" es la sustancia responsable de que estos cambios se produzcan. Se llaman estadios o instares a las sucesivas fases de la existencia del animal entre muda y muda. Este rasgo lo comparten los artrópodos con algunos otros filos, como los nemátodos que también tienen una cutícula y mudan; hay una teoría que los clasifica ahora juntos en un subreino Ecdysozoa.

Apéndices

Para los apéndices el exoesqueleto aporta tubos huecos articulados, en cuyo interior se sitúan los tejidos vivos y específicamente los músculos estriados que, adheridos a ambos lados de las articulaciones, les proporcionan versatilidad y rapidez de movimientos. Se llama artejos (voz que deriva del latín artículo, "articulado") a las piezas articuladas que forman los apéndices.

Existen dos tipos básicos de apéndices, los unirrámeos, formados por un solo eje, propios de los artrópodos terrestres (arácnidos, miriápodos e insectos), y los birrámeos formados por dos ejes y propios de los artrópodos acuáticos (trilobites y crustáceos). No hay acuerdo sobre cuál fue el apéndice ancestral.

En el curso de la evolución ha existido la tendencia a restringir los apéndices a determinadas regiones del cuerpo y a especializarlos para funciones distintas. Los apéndices de la cabeza están adaptados para la percepción sensorial, la defensa y para manipular los alimentos; los del tórax sirven para andar y nadar; los abdominales cumplen funciones respiratorias y reproductoras, como retener los huevos o aferrarse a la pareja durante la cópula. Otros se han modificado de tal modo que cuesta reconocerlos como tales (hileras de las arañas, peines de los escorpiones).

Aparato digestivo

El aparato digestivo de los artrópodos se divide en tres regiones bien diferenciadas, el estomodeo, el mesodeo y el proctodeo. Estomodeo y proctodeo son las regiones situadas en el extremo anterior y posterior, respectivamente; están recubiertas de cutícula que se renueva cada vez que el animal muda. La parte media del tubo digestivo, el mesodeo, deriva del endodermo (segunda hoja blastodérmica) y es la que produce las secreciones digestivas y donde se realiza la mayor parte de la absorción de nutrientes; frecuentemente presenta derivaciones o ciegos laterales que amplían su superficie.

Respiración

Muchos artrópodos son demasiado pequeños como para tener o necesitar órganos respiratorios. Los artrópodos acuáticos suelen presentar branquias, apéndices internamente más vascularizados que los otros órganos. Se encuentran en los crustáceos, como especializaciones de la rama dorsal de los apéndices torácicos, y de la misma manera en los xifosuros o en los euriptéridos o los primeros escorpiones fósiles. También se encuentran branquias secundarias (derivadas de las tráqueas) en las larvas acuáticas de algunos insectos, como las efímeras.

Como es general en los animales, los miembros del grupo de vida aérea respiran por órganos internalizados, que en los artrópodos pueden ser de dos tipos:

Circulación

El aparato circulatorio de los artrópodos es abierto, es decir, no existe un circuito cerrado de vasos por el que circule un líquido diferenciado, lo que propiamente se podría llamar sangre. Lo que existe es un motor de bombeo que es un vaso especializado de posición dorsal, al que se denomina corazón dorsal, que mueve el líquido corporal interno, la hemolinfa, que recibe de vasos posteriores abiertos e impulsa hacia adelante por vasos igualmente abiertos. La red de vasos está siempre escasamente desarrollada, salvo en las branquias de los artrópodos acuáticos. No hay células sanguíneas especializadas en el transporte de oxígeno, aunque, como en todos los animales existen amebocitos (células ameboideas) con funciones de inmunidad celular y hemostasis (coagulación y cicatrización). Sí puede haber pigmentos respiratorios, pero disueltos en la hemolinfa.[11]

Excreción

Los crustáceos presentan para la excreción glándulas antenales y maxilares, en la base de esos apéndices. Los arácnidos suelen disponer de glándulas coxales, que desembocan en la base de las patas locomotoras. En insectos y en miriápodos aparecen órganos tubulares característicos, llamados tubos o conductos de Malpighi, que desembocan entre el intestino medio y el intestino posterior (proctodeo); sus productos se suman a la composición de las heces.

Los artrópodos terrestres suelen ser uricotélicos, es decir, que para la excreción nitrogenada no producen amoníaco o urea, sino ácido úrico o, a veces, guanina.

En los artrópodos es frecuente la excreción por acumulación, como alternativa o complemento de la excreción por secreción. En este caso se acumulan los productos de excreción en nefrocitos, células pericárdicas o directamente en la cutícula. La acumulación suele ser de uratos o guanina, bases nitrogenadas muy poco solubles que forman depósitos sólidos. En este último caso las mudas sirven para la función añadida de librarse de esas excretas.

Sistema nervioso

Como corresponde a los protóstomos, el sistema nervioso se desarrolla en el lado ventral del cuerpo, y como corresponde a animales metaméricos, su organización es segmentaria. En cada segmento aparece un par de ganglios, de posición más o menos ventrolateral, con los dos ganglios de un par soldados o unidos por una comisura transversal y los de pares consecutivos unidos por nervios conectivos.

Sistema nervioso central

En los artrópodos es un órgano de tipo anelidiano, por tanto, tiene una estructura primariamente en forma de escalera de cuerda, o sea, dos cordones nerviosos longitudinales que recorren la parte ventral del cuerpo, con un par de ganglios por metámero unidos transversalmente por comisuras; no obstante, se producen procesos de concentración de ganglios debidos a la formación de tagmas.

Cerebro o sincerebro

Normalmente está formado por tres pares de ganglios que se asocian, correspondientes al procéfalon. Se pueden diferenciar tres regiones:

Éstos están relacionados entre sí por quiasmas.

En el protocerebro y deutocerebro, no se diferencian comisuras ni conectivos. El tritocerebro está formado por un par de ganglios que se unen a los anteriores en las cabezas denominadas tritocefálicas, perdiéndose los conectivos, mientras que en las cabezas deutocefálicas, se mantiene independiente, conservando los conectivos con el deutocerebro. Esto ocurre en algunos crustáceos como branquiópodos o cefalocáridos. En todos los casos, se diferencia la comisura, que es subesofágica.

Dentro de la cápsula cefálica, el cerebro tiene posición vertical; el protocerebro y el deutocerebro se sitúan hacia arriba, y el tritocerebro es inferior y se dirige hacia atrás.

Cadena nerviosa ganglionar ventral

Está formada por un par de ganglios por metámero que en principio presentan conectivos y comisuras. En grupos primitivos, los ganglios de cada par de segmentos se presentan disociados, y la estructura recuerda a una escalera de cuerda. Los grados de concentración y de acortamiento se deben a la supresión de las comisuras y los conectivos respectivamente.

Destaca el ganglio subesofágico; en hexápodos es resultado de la fusión de tres pares de ganglios ventrales correspondientes a los metámeros IV, V y VI e inerva las piezas bucales (las mandíbulas y los dos pares de maxilas) y por ello se llama gnatocerebro; en los decápodos, son seis los ganglios que se asocian (pues se incluyen los tres ganglios de los maxilípedos.

Sistema nervioso simpático o vegetativo

Neuronas sensitivas y motoras que forman ganglios y que se sitúan sobre las paredes del estomodeo. Este sistema está relacionado con el sistema nervioso central y con el sistema endocrino. En el sistema nervioso simpático se diferencian dos partes.

Sentidos

La mayoría de los artrópodos están dotados de ojos, de los que existen varios modelos distintos.

La visión de muchos artrópodos presenta ventajas que suelen faltar en vertebrados, como la habilidad para ver en un espectro extendido que incluye el ultravioleta próximo, o para distinguir la dirección de polarización de la luz. La visión del color está casi siempre presente y puede ser muy rica; el crustáceo Squilla mantis, la galera, presenta trece pigmentos distintos con diferente sensibilidad al color, lo que contrasta con el pobre sistema tricromático (de tres pigmentos) de la mayoría de los primates, incluida nuestra especie.

Distribuidos por todo el cuerpo, pueden encontrarse sensilias, que son receptores sensibles a los estímulos químicos, como los del gusto o el olfato, y receptores táctiles, asociado a antenas y palpos y también a setas táctiles, pelos que está asociados a una célula sensible. Algunos insectos disponen de un sentido del oído, lo que es revelado por la existencia de señales auditivas de comunicación intraespecífica, como por ejemplo en los grillos. Muchos son sensibles a las vibraciones del suelo, por las que detectan la presencia de presas o depredadores; otros, como las moscas, poseen tricobotrios capaces de percibir mínimos cambios de presión ambiental.

Los artrópodos suelen estar dotados de sensores de posición, sencillos pero eficaces, que les ayudan a mantener la posición y el equilibrio, como los órganos cordotonales que un díptero tiene en los halterios.

Reproducción


En la reproducción sexual, las hembras, tras ser fecundadas por los machos, ponen huevos. El desarrollo, a partir del huevo, puede ser directo o indirecto.

Se dan frecuentes casos de partenogénesis (la hembra produce un cigoto sin haber sido fecundada), sobre todo en crustáceos e insectos. También hay casos de reproducción por embriogénesis que es unos de los tipos de fragmentación donde las larvas, estados jóvenes o embrionarios se dividen en nuevos individuos.

También se dan casos de hermafroditismo que aparecen sobre todo en especies parásitas o sésiles.

Filogenia


Durante muchas décadas, las relaciones filogenéticas de los celomados se basaron en la concepción de los articulados de Cuvier,[12]​ un clado formado por anélidos y artrópodos. Numerosos análisis morfológicos modernos basados en principios cladistas han corroborado la existencia del clado articulados, por ejemplo, Brusca & Brusca,[3]​ Nielsen[8]​ o Nielsen et al.,[9]​ entre otros.

No obstante diversos análisis cladísticos, como el de datos combinados de Zrzavý et al (1998)[6]​ y otros han llegando a la conclusión de que anélidos y artrópodos no están directamente relacionados. La presencia de metamerización en anélidos y artrópodos debe considerarse un caso de convergencia evolutiva. Por el contrario, estos estudios propusieron el clado Ecdysozoa en el que los artrópodos muestran estrechas relaciones filogenéticas con grupos pseudocelomados, como nematodos, nematomorfos, priapúlidos y quinorrincos, por la presencia compartida de una cutícula quitinosa y un proceso de muda (ecdisis) de la misma. Ecdysozoa, en su definición actual, incluye a los miembros de tres subclados putativos: Nematoida (Nematoda y Nematomorpha), Scalidophora (Priapulida, Loricifera y Kinorhyncha) y Panarthropoda (Arthropoda, Onychophora y Tardigrada).[13]

La filogenia de los artrópodos ha sido muy controvertida, con una enfrentada polémica entre los partidarios del monofiletismo y los del polifiletismo. Snodgrass[14]​ y Cisne[15]​ han defendido el monofiletismo, aunque el primero contempla los artrópodos divididos en aracnados + mandibulados, y el segundo los interpreta divididos en esquizorrámeos y atelocerados. Tiegs & Manton[16]​ defendieron el difiletismo, con los artrópodos divididos en esquizorrámeos + unirrámeos y los onicóforos como grupo hermano de miriápodos + hexápodos. Posteriormente, Manton[17]​ y Anderson[18]​ sostuvieron el polifiletismo del grupo (ver Uniramia).

Con la aparición de los primeros estudios basados en datos moleculares y análisis combinados de datos morfológicos y moleculares, parece que la antigua polémica sobre monofilia y polifilia ha quedado superada, ya que todos ellos corroboran que los artrópodos son un grupo monofilético en el que incluyen también los onicóforos y tardígrados (el clado se ha dado en llamar panartrópodos); la mayoría también proponen la existencia del clado mandibulados que reúne a los subfilos Hexapoda, Crustacea y Myriapoda. Principalmente se había propuesto que los hexápodos podrían estar emparentados con los crustáceos o los miriápodos,[19]​ sin embargo la hipótesis de que estarían relacionados con los miriápodos se ha descartado en gran medida, debido a varios análisis moleculares y evidencias fósiles que sugieren que los crustáceos están estrechamente con los hexápodos y que de hecho son un grupo parafilético de estos últimos, por tanto las relaciones filogenéticas de los artrópodos quedarían de la siguiente manera:[20][21][22]



Onychophora


Arthropoda

Trilobita




Chelicerata


Mandibulata

Myriapoda


Pancrustacea

Crustacea



Hexapoda







Taxonomía


Los artrópodos forman el filo Artrópodos, que se dividen en cuatro subfilos.




Hexapoda (Insecta, Collembola, Diplura, Protura)



Crustacea (cangrejos, gambas, Isopoda, etcétera)



Myriapoda

Pauropoda



Diplopoda (milpiés)



Chilopoda (ciempiés)



Symphyla



Chelicerata

Arachnida (arañas, escorpiones, etcétera)



Eurypterida (gigantostráceos: extintos)



Xiphosura (xifosuros)



Pycnogonida (picnogónidos)




Trilobites (extinto)



Árbol filogenético de los artrópodos y grupos relacionados[23]

De acuerdo con otra propuesta clasificatoria[4]​, el filo se divide en cinco subfilos:

Véase también


Referencias


  1. Zhang, Zhi-Qiang (2013). «Phylum Arthropoda» . Zootaxa 3703 (1). doi:10.11646/zootaxa.3703.1.6 . Consultado el 6 de febrero de 2020. 
  2. Chapman, A. D., 2009. Numbers of Living Species in Australia and the World, 2nd edition. Australian Biodiversity Information Services ISBN (online) 9780642568618
  3. a b c Brusca, R. C. & Brusca, G. J., 1990. Invertebrates. Sinauer, Sunderland.
  4. a b Brusca, Richard C.,; Shuster, Stephen M., 1954-. Invertebrates (Third edition edición). ISBN 978-1-60535-375-3. OCLC 928750550 . Consultado el 2020-06-02. 
  5. Zhi-Qiang Zhang (2011). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness (en inglés). Magnolia Press. p. 8. ISBN 1869778499. 
  6. a b Zrzavý, J., Mihulka, S., Kepka, P., Bezdék, A. & Tietz, D., 1998. Phylogeny of Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics, 14(3): 249-285.
  7. Giribet, Gonzalo; Edgecombe, Gregory D. (2017-09-01). «Current Understanding of Ecdysozoa and its Internal Phylogenetic Relationships» . Integrative and Comparative Biology (en inglés) 57 (3): 455-466. ISSN 1540-7063 . doi:10.1093/icb/icx072 . Consultado el 2020-06-02. 
  8. a b Nielsen, C., 1985. Animal phylogeny in the light of the trochaea theory. Biol. J. Linnean Soc., 25: 243-299.
  9. a b Nielsen, C., Scharff, N. & Eibye-Jacobsen, D., 1996. Cladistic analyses of the animal kingdom. Biol. J. Linnean Soc., 57: 385-410.
  10. Borror, Donald (1989). «An introduction to the study of insects. Sixth Edition.». ISBN 0-03-025397-7. 
  11. Circulatory System. North Carolina State U.
  12. Cuvier, G., 1812. Sur un nouveau repprochement à establir entre les classes qui composant le Règne Animal. Ann. Mus. Hist., 19: 73-84.
  13. Giribet, Gonzalo; Edgecombe, Gregory D. (2017-09-01). «Current Understanding of Ecdysozoa and its Internal Phylogenetic Relationships» . Integrative and Comparative Biology (en inglés) 57 (3): 455-466. ISSN 1540-7063 . doi:10.1093/icb/icx072 . Consultado el 2020-06-02. 
  14. Snodgrass, R. E., 1938. The evolution of Annelida, Onychophora, and Arthropoda. Smithson. Misc. Coll., 97: 1-159.
  15. Cisne, J. L., 1974. Trilobites and the origin of Arthropods. Science, 186: 13-18.
  16. Tiegs, O. W. & Manton, S. M., 1958. The evolution of the Arthropoda. Biol. Rev., 33: 255-337.
  17. Manton, S., 1964. Mandibular mechanisms and the evolution of Arthropods. Philos. Trans. R. Soc. Lond. (Ser. B, Biol. Sci.), 247: 1-183.
  18. Anderson, D. T., 1973. Embryology and Phylogeny in Annelids and Arthropods. Pergamon Press, Oxford.
  19. Wheeler, W. C., 1998. Sampling, grounplans, total evidence and the systematics of arthropods. En: R. A. Fortey & R. H. Thomas (eds.): Arthropod Relationships: 87-96. Chapman & Hall, London
  20. Jerome C. Regier, Jeffrey W. Shultz, Andreas Zwick, April Hussey, Bernard Ball, Regina Wetzer, Joel W. Martin & Clifford W. Cunningham (2010). «Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences». Nature 463 (7284): 1079-1083. PMID 20147900 . doi:10.1038/nature08742 . 
  21. Todd H. Oakley, Joanna M. Wolfe, Annie R. Lindgren and Alexander K. Zaharoff (2013). «Phylotranscriptomics to bring the understudied into the fold: monophyletic ostracoda, fossil placement, and pancrustacean phylogeny». Molecular Biology and Evolution 30 (1): 215-233. PMID 22977117 . doi:10.1093/molbev/mss216 . 
  22. Giribet, Gonzalo; Edgecombe, Gregory D. (2019-06-17). «The Phylogeny and Evolutionary History of Arthropods» . Current Biology (en english) 29 (12): R592-R602. ISSN 0960-9822 . PMID 31211983 . doi:10.1016/j.cub.2019.04.057 . Consultado el 2020-06-02. 
  23. «Tree of Life Web Project. Version 1 January 1995 (temporary) of Arthropoda» . Tree of Life Web Project. 1995. Consultado el 9 de mayo de 2009. 

Enlaces externos










Categorías: Arthropoda








A partir de: 28.06.2020 02:30:56 CEST

Fuente: Wikipedia (Autores [Historia])    Licencia: CC-by-sa-3.0

Modificaciónes: Se eliminaron todas las imágenes y la mayoría de los elementos de diseño relacionados con ellos. Algunos iconos fueron reemplazados por FontAwesome-Icons. Algunas plantillas se eliminaron (como "el artículo necesita expansión) o se asignaron (como" notas de sombrero "). Las clases CSS fueron eliminadas o armonizadas.
Se eliminaron los enlaces específicos de Wikipedia que no conducen a un artículo o categoría (como "Enlaces rojos", "enlaces a la página de edición", "enlaces a portales"). Cada enlace externo tiene un FontAwesome-Icon adicional. Además de algunos pequeños cambios de diseño, se eliminaron los contenedores de medios, mapas, cuadros de navegación, versiones habladas y Geo-microformatos.

Tenga en cuenta: Debido a que el contenido dado se toma automáticamente de Wikipedia en el momento dado, una verificación manual fue y no es posible. Por lo tanto, LinkFang.org no garantiza la precisión y la actualidad del contenido adquirido. Si hay una información que es incorrecta en este momento o tiene una pantalla incorrecta, no dude en Contáctenos: e-mail.
Ver también: Información legal & Política de privacidad.